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The effect of thermomolecular pressure in a cylindrical channel is analyzed, at 
any values of the Knudsen number, on the basis of the S-model kinetic equation. 

The theory of thermomolecular pressure in a cylindrical channel at any values of the 
Knudsen number has been outlined earlier [I-3]. While in [],2] the problem was solved on the 
basis of the Bubnov--Galerkin--Knudsen model equation, in [3] a special "Maxwell spheres" model 
was used and calculations were performed by the Monte Carlo method. A completely diffuse 
scattering of gas molecules by the channel surface was assumed in [],3], but a specular- 
diffuse model of boundary conditions was used in [2] on the erroneous premise of thermal 
creep being independent of the specularity coefficient. 

The main deficiency of the Bubnov--Galerkin--Knudsen model is that it does not describe 
processes which accompany simultaneous heat and mass transfer. The results obtained on its 
basis must, therefore, be further refined. This can be done with the aid of the S-model 
equation [4], which represents a higher-order approximation. 

It has been shown in an earlier study [5] that the effect of thermomolecular pressure 
at any values of the Knudsen number can be described by the expression 

P~ ={ T~ ~v 
P2 \ T2 / " (]) 

where Pi, Ti are the pressure and the temperature in the respective volumes, and exponent y 
can depend on various parameters such as, foremost, the Knudsen number. 

Well-known is the Knudsen relation with y = I/2 for the free-molecular mode of flow [6]. 

Available experimental data [7-9] indicate that y has different values for different 
gases. An analysis has further revealed that these differences are due to different modes 
of interaction of molecules with a capillary wall, and that these differences increase as the 
gases become rarefied (i.e., with a higher Knudsen number). This must be accounted for in 
the theory, in defining the boundary conditions. 

It can be demonstrated that the specular-diffuse model does not explain the experimental 
results. Specifically, according to this model, y = I/2 for all gases when NKn + ~ [I0]. 
According to the experiments, meanwhile, the value of y depends most on the kind of gas 
exactly in the free-molecular mode of flow [7,8]. Consequently, the specular-diffuse model 
of boundary conditions must be abandoned. 

The object of this study is, first of all, to obtain a solution to the problem of ther- 
momolecular pressure over the entire range of Knudsen number values on the basis of a correct 
kinetic equation and, secondly, to explain the dependence of exponent y on the kind of gas 
with a special model of boundary conditions. 

We consider the motion of a monoatomic one-component gas in a cylindrical capillary tube 
of radius Ro, due to longitudinal pressure and temperature gradients. The axis of this capil- 
lary coincides with the z axis of coordinates. The state of the gas is assumed to be one of 
small perturbation and is described by a distribution function insignificantly little differ- 
ent from the Maxwell distribution function 

f =fo(1 +h) ,  Ihl < 1, 
(2) 
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= exp . , fo n (z) 2 r(z) 

where  n ,  T a r e  t he  gas c o n c e n t r a t i o n  and t e m p e r a t u r e ;  m, t he  mass o f  a gas m o l e c u l e ;  and k ,  
t he  Bo l t zmann  c o n s t a n t .  

Then the linearized kinetic equation with the S-model collision integral [4] can be 
written as 

Oh cp ---~ + c= [.v q- ( c2-- 5 ) "~ ] --- R [ 2c=u -~ Qc. ( cZ- 5 ) - - h i ,  (3) 

1 dP 1 dT. ],/'~" Ro ]"'~" NKn-t, c, = { m '~ 1/2 
v =  p d-----~" X = - T  dz " R =  ~ I = ~  \ - ~ o )  vi" 

T o =  T (z = 0), u = U =  ~ - s / 2  ~ exp (-- c") de, 

Q=~ \2-~0] [ m '~'/2 i X  q= 154 z _ z / 2 ~ h c . ( c 2 _ 2 ) e x p ( _ c 2 ) d c  ' (4) 

where U is the macroscopic velocity of the gas, q is the thermal flux density along the capil- 
lary tube, x and ep are two-dimensional vectors in a plane normal to the z axis, and the x,z 
coordinates are referred to the tube radius Ro. 

As the boundary conditions we stipulate a completely diffuse scattering of gas molecules 
by the capillary wall (later the results will be extended to the case of an arbitrary tangen- 
tial-momentum accommodation level) 

h(x ,  c ) =  OI,xl= I , n . % > O ,  (5 )  

where n is the normal to the channel surface toward the center. With condition (5), Eq. (3) 
can be formally integrated along the characteristic curves [2]. Using the definitions (4), 
we easily obtain a system of integral equations for the macroscopic velocity of a gas and for 
the density of the thermal flux 

" Jo (J2 -- Jo) \ 

v ,x_x,, 

where 

~1= 2 R u - - ? ;  ~z = R Q - - 1 ;  ? = - - ,  

0 C , 

(RIx - x' l) is the argument of function Jn, parameter y appears also in Eq. (I) and is called 
the thermomolecular pressure exponent. 

Equations (6) yield the local values of macroscopic parameters. Of practical interest, 
however, are the mean-over, the-section numerical gas flux I N and thermal flux Iq in the capil- 

lary 

k m ] o 
(8) 

k m ] .o 

with the �9 forces stipulated in the form [11] 

XN=--kv, Xa=--x/To. (9) 

The reciprocity relation applies to the cross coefficients 

LNq ~- LqN. 
( l o )  
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Numerical calculations are more conveniently done with dimensionless quantities which 
are related to the kinetic coefficients as follows: 

~P ~--. ~( m.___~_~l/22[~T0 ' 9[gl~o LNN' GT~'-- (2~o)1/2 po2[g" LNq, 

Qv=__ 4 ( m  11/2 le LqN, QT: 4 (2~To) 1/2 1 
1--5" \ 2 - ~ o  J Po 15 P.---~o Lq~, 

(11) 

and, according to relation (I0), 

Q v = !  0~. (12) 
15 

There are also the obvious relations between fluxes IN, Iq and functions ~i, ~frespec- 
tively 

2 R  , o 

(13) 
,0 15 

4 R o 

Important special cases are the thermomolecular pressure and the meehanocaloric effect. 
The former represents a steady state of the first order, with the temperature gradient main- 
tained constant and a corresponding pressure gradient established in the system. This state 
is characterized by a zero numerical mean-over-the-section gas flux, i.e., I N = 0. Expres- 
sions (8), (7), (9), (11), and (13) yield here 

Y =  Gp = - - f z ~  ~apixdx. (14) 
o 

The mechanocaloric effect represents a steady state of the second order and characterizes a 
heat transfer along the channel at a constant pressure gradient but without a temperature 
gradient (T =0). Expressions (8), (9), (I0), (II), and (14) yield here 

L~vq IN = -- ykTolN . (15) 
lq = LNN 

Thus the universal exponent of thermomolecular pressure y also determines the magnitude of 
the mechanocaloric effect. 

For determining the fluxes (13) and the thermomolecular pressure exponent (14), one must 
solve the system of integral equations (6). It is easy to show that these equations are of 
the Fredholm kind. Therefore, they can be solved by the Bubnov-Galerkin method []2]. For 
this we select trial functions of the form 

~ l = a + b x  z, ~ z : c .  (16) 

Such a selection is justified by the trend of macroscopic parameters in a continuum (NKn § 
0) and corresponds to the solution of Navier--Stokes equations or of the equation of heat con- 
duction. 

For determining the constants a, b, c the trial functions (16) must be inserted into the 
system of Eqs. (6), with the requirement of a left-hand ortbogonality of the resulting expres- 
sions to the basis functions (I 0), (x 2 0), (0, i), and with the scalar product being 

1 

(f, g) = ~ f.gxdx. 
o 

Thus the constants a, b, c (and, therefore, also 21, ~2) are found from the solution to 
a system of three linear algebraic equations. Upon inserting expressions (16) into expres- 
sions (13) and (14), we can easily determine the fluxes I N and Iq as well as the thermomolec- 
ular pressure exponent y. The final expressions are rather unwieldy and will not be shown 
here. It is worthwhile, however, to show their asymptotic expansions: 

1. R<<I 
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Fig. 1 Fig. 2 
Fig. I. Poiseuille flux Gp as a function of the rare- 
faction index R and of the tangential-momentum accon~Do- 
dation coefficient a: I) ~ = 1.0; 2) 0.97; 3) 0.90 (I -- 
Ne; II -- Ar) [14]. 

Fig. 2. Thermal creep G T as a function of the rarefac- 
tion index R: 1) S-model, 2) Bubnov-Galerkin-Knudsen 
model [1,2]. 

Op = 1.5045 + R In R - -  0.3842R - -  0.8024R 2, 

G, = 0.7523 + R lnR + 0.1158R - 1.2036R 2, 

Q, = 0.4514 + _RR lnR --0.06139R--0.3477RL 
3 

(17) 

2. R > > l  

R 1 0.6712 - 1 Gp = --~ + 1.0073 q- --R- R~ 0.8657, 

1 
G, = 

R 

1 1 1 
1 .125- -  1 . 4 6 8 7 + - _ - - 0 . 6 7 0 4  ~ 2.3424, 

R-- ~ R ~ R, 

I 0 . 5 -  1 1 I 
Q~= R R 2 0.5078-F R3 0 .2469-  R ~ 0.3146. 

(18)  

The solution must be extended to the case of an arbitrary accommodation of gas molecules 
at the channel surface. Following the procedure in [13], we rewrite the boundary condition 

(5) as 

h(x, c ) =  Ac,]),l=l, n . % > O .  (19) 

The constant A is determined in terms of the tangential-momentum accommodation coefficient a 

from the expression 

= = IP~;I--IP%I , (20) 

+ 
where Pxz denote the fluxes of molecules impinging on and reflected from the capillary wall 

respectively. 

Faithfully repeating the procedure proposed in [13], we can easily establish the follow- 
ing relation between fluxes at complete and at an arbitrary tangential-momentum acconHnodation 

level respectively: 

% ( R ; ~ = O ~ ( R ;  I ) + V ~  1 - - =  , 

o, (R; ~) = o, (R; D, Q, (R; (~) = Q, (R; D. 

We have thus found that thermal creep GT and thermal flux QT do not depend on u. 

According to relations (14) and (21), 

v ( R ; = ) - - -  O,(R; I) 
G~(R; 1)+l /E 1--= 

(21) 

(22) 
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Fig. 3 Fig. 4 
Fig. 3. Universal exponent of thermomolecular pressure y 
as a function of the rarefaction index R and of the tan- 
gential-momentum accommodation coefficient ~: l) S-model, 

= l.O, 2) S-model, ~ = 0.97, 3) S-model, ~ = 0.85, 4) 
Bubnov--Galerkin--Knudsen model, ~ = l.O [i, 2]; (I -- neon, 
II -- argon) [8]. 

Fig. 4. Universal exponent of thermomolecular pressure y 
as a function of the rarefaction index R in the slip mode: 
l) S-model, 2) Bubnov--Galerkin--Knudsen model [2]; (I -- neon, 
II -- argon) [9]. 

For the free-molecular mode, moreover, the Knudsen relation [6] extends to arbitrary values 
of coefficient a, namely 

I 
lira? : 3 1 --~ (23) 
R-o 2+ -- ~ - -  

4 

Numerical calculations of flux. es Gp, GT, and QT for various values of the gas rarefac- 
tion index R were performed on a BESM-6 high-speed computer with a precision not worse than 
0 . 1 % .  

The theoretical results for a Poiseuille flux Gp are compared in Fig. ] with the exper- 
imental data in [14]. The experiments had been performed in long glass capillaries with 
fused walls, by the method of relaxation of a small pressure drop. The theoretical curves, 
corresponding to ~ = 0.97 (curve 2) and ~ = 0.90 (curve 3), accurately describe the data for 
argon and neon over the entire range of radii R, the discrepancy not exceeding the measure- 
ment error. 

The data on thermal creep G T obtained in this study and on the basis of the Bubnov-- 
Galerkin-Knudsen model [1,2] are shown in Fig. 2, curves I and 2 respectively. The discrep- 
ancy reaches 31% at R ~ 10, and is due to an inadequate approximation of the total inter- 
molecular-collision operator in the Bubnov--Galerkin-4<nudsen model. The results according to 
this model can be improved by a special matching of the gas rarefaction index [I], but even 
then their deviation from the S-model will amount to ~5% at R ~ 3. These authors could not 
make comparisons with the data in [3], unfortunately, because the latter had been presented 
in an inconvenient form. 

Theoretical values of the thermomolecular pressure exponent y are compared in Fig. 3 
with the experimental values in [8]. That experiment was performed in long glass capillaries 
at the temperature ratio TI/T2 = 77/299. The theoretical curves, corresponding to ~ = 0.97 
and ~ = 0.85, describe the experimental data for argon and neon with satisfactory accuracy. 
Interestingly, the same value of ~ was obtained also for an isothermal Poiseuille flow of 
argon, a somewhat different accommodation coefficient in the case of neon. 

Theoretical values and experimental values obtained in [9] under conditions with slip 
(R >> I) are compared in Fig. 4. This mode is described by expressions (18). The accommoda- 
tion coefficient selected on the basis of closest agreement between theory and experiment is 
for neon ~ ~ 0.5. Such a decrease of ~ can be explained by the formation, with rising pres- 
sure, of a layer of adsorbed molecules on the capillary wall and by the surface thus becoming 
molecularly smooth. There is also another possible cause: the effect of thermomolecular 
pressure in the slip mode can depend not only on the tangential-momentum accommodation coef- 
ficient but also on the accommodation coefficients relative to other macroscopic parameters 
(e.g., of the tangential energy flux). Even if such a dependence exists, however, it weakens 
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to an intermediate one and disappears entirely in the free-molecular mode. This is con- 
firmed by a comparative analysis of experimental data on isothermal Poiseuille flow and 
thermomolecular pressure. 

NOTATION 

Here NKn is the Knudsen number; y, the universal exponent of thermomolecular pressure; 
Ro, the radius of a cylindrical capillary; P, the pressure; T, the temperature, v, the log- 
arithmic pressure gradient; T, the logarithmic temperature gradient; U, the macroscopic gas 
velocity; q,. the thermal flux density; R, the gas rarefaction index; l, the length of the 
mean free path; IN, the numerical mean-over-the-section gas flux; lq, the mean-over-the- 
section thermal flux; and ~, the tangential-momentum accon~nodation coefficient. 
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MEASUREMENT OF NONSTATIONARY HEAT FLUXES BY 

"AUXILIARY WALL" SENSORS 

G. N. Dul'nev, V. I. Zavgorodnii, 
V. A. Kuz'min, and N. V. Pilipenko 

UDC 536.24.083 

Computational dependences are obtained to determine the nonstationary heat flux 
by using sensors executing the method of an auxiliary wall. The dependences are 
valid for an arbitrary relationship between the thermophysical properties of the 
sensor and the object on which it is located. 

The peculiarities of measuring nonstationary heat fluxes by heat meters executing the 
method of an auxiliary wall are considered in [I]. A number of dependences is presented to 
determine the flux q(T) of heat meters located on the surface of a semi-infinite body for 
particular values of the thermophysical properties of the heat meter and the base, defined 
by the magnitude of the criterion x = (%2/%z) (~al/a=) = O; 1.0; =. A solution of the prob- 
lem is presented below for any values of ~. As in [I], the model of the heat meter is rep- 
resented in the form of a plate located on a half-space (sketch). The temperature fields of 
the heat meter t1(x, T) and the base t2(x, T) are described by the equations 

_ _  ( ( i )  Oft = a ~  , i = 1 ; 2 .  
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